Disclaimer

Mentioning of trade names or commercial products in this presentation does not necessary imply recommendation or endorsement of the product
Outline

• Where does it fit?
• Field evaluation
• Agronomic implications
Rationale for High-Speed Planter

• *Enable timely planting* during short windows of opportunity (cool and wet springs).

April 14, 2018
Rationale for High-Speed Planter

• *Enable timely planting* under short windows of opportunity (cool and wet springs).
• Overall *earlier planting* for the entire operation (soybean?)
Corn response to planting dates

Grain yield (bu/ac)

Planting Date

Source: https://cropwatch.unl.edu/how-corn-planting-date-can-affect-yield
Soybean response to planting dates
2014 & 2015

Yield (% of Max)

3 Varieties
\[yld = -0.0093x^2 + 2.14x - 22.027, R^2 = 0.94 \]

4th Variety
\[yld = -0.73x + 193.14, R^2 = 0.87 \]

Hall and Casteel, unpublished
Rationale for High-Speed Planter

- *Enable timely planting* under short windows of opportunity (cool and wet springs).
- Overall *earlier planting* for the entire operation (soybean?)
- *Equivalent planting progress* in “smaller fields” with fewer rows per pass compared to “larger fields” planted with wider equipment.
- *Who wouldn’t want to plant twice as fast!?!* Especially, if we don’t trade yield for speed!
Rationale for High-Speed Planter

• Enable timely planting under short windows of opportunity (cool and wet springs).
• Overall earlier planting for the entire operation (soybean?).
• Equivalent planting progress in "smaller fields" with fewer rows per pass compared to "larger fields" planted with wider equipment.
• Who wouldn't want to plant twice as fast?! Especially, if we don't trade yield for speed!
Additional requirement(s)

• Tractor power
• Starter fertilizer package – if you use one
• Logistics of planting
 • Field preparation
Seed Delivery from Metering Unit

Source: http://www.agrigold.com/Universal/Articles/National-Farm-Machinery-Show-2014/

Field Evaluation of New Planters
John Deere Exact Emerge® 1775 NT

• 2015 West Lafayette, IN: No Till planted May 24th
 • 5, 7.5, 10 mph
 • 90K, 130K seeds ac⁻¹

• 2016 Lafayette, IN: Conv. Till planted April 19th
 • 5, 7.5, 10, 12.5 mph
 • 90K, 130K, 170K seeds ac⁻¹

• 2017 LaCrosse, IN: No Till planted April 26th
 • 5, 7.5, 10, (12.5 mph attempted)
 • 70K, 90K, 130K seeds ha⁻¹
Soil Displacement with High Speed Planting

5 mph

10 mph

Soil Displacement with High Speed Planting

5 MPH

10 MPH
Seedling Emergence Measurement
Emergence Progress with Various Planting Speeds (2015)

(Kovács and Casteel, unpublished)
Emergence Progress with Various Planting Speeds (2016)

Kovács and Casteel, unpublished
Final Plant Stand (plants ac\(^{-1}\)) at Various Planting Speed

<table>
<thead>
<tr>
<th>Speed</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 mph</td>
<td>91,700</td>
<td>74,700</td>
<td>80,800 b</td>
</tr>
<tr>
<td>7.5 mph</td>
<td>95,300</td>
<td>78,400</td>
<td>83,400 b</td>
</tr>
<tr>
<td>10 mph</td>
<td>92,600</td>
<td>72,700</td>
<td>87,700 a</td>
</tr>
<tr>
<td>12.5 mph</td>
<td>-</td>
<td>67,800</td>
<td>-</td>
</tr>
</tbody>
</table>

\(p < F\)

<table>
<thead>
<tr>
<th>Speed</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>90K sds ac(^{-1})</td>
<td>77,200 b</td>
<td>54,300 c</td>
<td>71,400 b</td>
</tr>
<tr>
<td>130K sds ac(^{-1})</td>
<td>109,100 a</td>
<td>76,300 b</td>
<td>97,400 a</td>
</tr>
<tr>
<td>170K sds ac(^{-1})</td>
<td>-</td>
<td>92,000 a</td>
<td>-</td>
</tr>
</tbody>
</table>

\(p < F\)

Seedling Rate

<table>
<thead>
<tr>
<th>Seeding Rate</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>90K sds ac(^{-1})</td>
<td>77,200 b</td>
<td>54,300 c</td>
<td>71,400 b</td>
</tr>
<tr>
<td>130K sds ac(^{-1})</td>
<td>109,100 a</td>
<td>76,300 b</td>
<td>97,400 a</td>
</tr>
<tr>
<td>170K sds ac(^{-1})</td>
<td>-</td>
<td>92,000 a</td>
<td>-</td>
</tr>
</tbody>
</table>

\(p < F\)

- \(<.0001\)
- \(<.0001\)
- \(<.0001\)
Plant available space: mean distance of nearest adjacent plants
Plant Spacing Measurement

- Plant spacing \((\text{PAS}_{\text{ref}})\) at target seeding rate

- Double: \(\text{PAS} < 0.5 \times \text{PAS}_{\text{ref}}\)
- Accurate: \(0.5 \times \text{PAS}_{\text{ref}} < \text{PAS} < 1.5 \times \text{PAS}_{\text{ref}}\)
- Missed: \(1.5 \times \text{PAS}_{\text{ref}} < \text{PAS}\)

Adapted from Kachman and Smith (1995)
Plant Spacing Distribution with Various Planting Speed

5 mph 7.5 mph 10 mph
2015

5 mph

7.5 mph

10 mph

Relative frequency (%)

Plant available spacing (cm plant$^{-1}$)

(Kovács and Casteel, unpublished)
Cold and wet emergence period

(Kovács and Casteel, unpublished)
Cold and wet emergence period

(Kovács and Casteel, unpublished)
Grain Yield (bu ac$^{-1}$) at Various Planting Speed

<table>
<thead>
<tr>
<th>Speed</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 mph</td>
<td>65.8</td>
<td>73.7</td>
<td>57.0 b</td>
</tr>
<tr>
<td>7.5 mph</td>
<td>68.8</td>
<td>74.0</td>
<td>60.4 a</td>
</tr>
<tr>
<td>10 mph</td>
<td>66.0</td>
<td>74.4</td>
<td>56.8 b</td>
</tr>
<tr>
<td>12.5 mph</td>
<td>-</td>
<td>72.7</td>
<td>-</td>
</tr>
</tbody>
</table>

$p < F$ 0.18 0.73 0.01

Seeding Rate

<table>
<thead>
<tr>
<th>Seeding Rate</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>90K sds ac$^{-1}$</td>
<td>66.9</td>
<td>72.4</td>
<td>57.8</td>
</tr>
<tr>
<td>130K sds ac$^{-1}$</td>
<td>66.9</td>
<td>74.4</td>
<td>58.4</td>
</tr>
<tr>
<td>170K sds ac$^{-1}$</td>
<td>-</td>
<td>74.3</td>
<td>-</td>
</tr>
</tbody>
</table>

$p < F$ 0.99 0.29 0.62
High-speed Planter in Corn
Field Study in 2014

Seeding rate @34,000 plants/ac in 20” rows

Individual plant spacing (PAS_{ref} 9.22 in)

<table>
<thead>
<tr>
<th>Planting speed (mph)</th>
<th>Mean (in)</th>
<th>SD (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>9.46</td>
<td>2.36</td>
</tr>
<tr>
<td>7.5</td>
<td>9.36</td>
<td>2.09</td>
</tr>
<tr>
<td>10</td>
<td>9.44</td>
<td>1.77</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Planting speed (mph)</th>
<th>Population (pl/ac)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>32,900</td>
</tr>
<tr>
<td>7.5</td>
<td>34,000</td>
</tr>
<tr>
<td>10</td>
<td>33,500</td>
</tr>
</tbody>
</table>

Source: T. Vyn, Purdue U.
2016 ExactEmerge Trial
Cooperator: Greg Gilbert, Romney, IN

Grain Yields (bu/acre)

32,000 plants/acre
Avg. grain yield = 241.4 bu/acre

38,000 plants/acre
Courtesy: T. Vyn, Purdue U.

©2018 Kovács, SDSU
Ohio study in 2017

- Planter: Case IH 2150
- Seeding rate: 34,000 seeds ac$^{-1}$

Source: 2017 eField Report, Klopfenstein, theOSU
Ohio study in 2017

- Planter: Case IH 2150
- Seeding rate: 34,000 seeds ac\(^{-1}\)

<table>
<thead>
<tr>
<th>Speed (mph)</th>
<th>Singulation (%)</th>
<th>Spacing SD (in)</th>
<th>Spacing CV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>96.6</td>
<td>1.8</td>
<td>0.29</td>
</tr>
<tr>
<td>7.5</td>
<td>96.2</td>
<td>1.9</td>
<td>0.31</td>
</tr>
<tr>
<td>10</td>
<td>95.6</td>
<td>2.0</td>
<td>0.33</td>
</tr>
<tr>
<td>12.5</td>
<td>95.8</td>
<td>2.0</td>
<td>0.32</td>
</tr>
</tbody>
</table>

Source: 2017 eField Report, Klopfenstein, theOSU
How Important Plant Spacing Itself?
Plant Spacing Effect on Per-Plant Corn Yield

\[
y = 6.4674x + 120.79 \\
R^2 = 0.075
\]

\[
y = 7.6627x + 120.69 \\
R^2 = 0.060
\]

(Kovács et al. 2011; Kovács and Vyn, 2014)
Plant Spacing Effect on Per-Plant Corn Yield

\[y = -24.881x + 376.03 \]
\[R^2 = 0.350 \]

\[y = -23.799x + 378.05 \]
\[R^2 = 0.224 \]

* Assuming all plants would have the same ear size

(Kovács et al. 2011; Kovács and Vyn, 2014)
![Plant Spacing Effect on Grain Yield](image)

- Spatial and temporal non-uniformity
- Study conducted in Argentina (2012/13, 2013/14)

(Masino et al., 2018)
Plant Spacing Effect on Grain Yield

<table>
<thead>
<tr>
<th>Temporal distribution</th>
<th>Spatial distribution</th>
<th>Uniform</th>
<th>Non-Uniform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uniform</td>
<td>(a)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Uniform</td>
<td>(b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uniform</td>
<td>(c)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Uniform</td>
<td>(d)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>Uniform spatial distr.</th>
<th>Non-uniform spatial distr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variety 1 (MG 3)</td>
<td>45.4 b</td>
<td>42.2 c</td>
</tr>
<tr>
<td>Variety 2 (MG 4)</td>
<td>49.9 a</td>
<td>50.4 a</td>
</tr>
</tbody>
</table>

(Masino et al., 2018)
Plant Spacing Effect on Soybean Yield

(Kovács and Casteel, unpublished)
Conclusions

• Uniformity of plant distribution has not effected (corn) or slightly decreased (soybean) with increased planting speed
 • Seed distribution may have been better
 • Largest performance decline was observed at the highest seeding rate (in 2016)

• Grain yield was not affected by planting speed

• Careful setup of row cleaners at high speeds (especially in no-till conditions)
Conclusions

• Technology is capable for high-speed planting
• This is only one tool in the toolbox (how does it fit to your system?)
• Successful planting is just a step in the plant’s whole-year journey
Acknowledgement

• Dr. Tony Vyn

• Nathan Jenkins and John Deere for providing an ExactEmerge® planter and tractor

• Purdue Ag Research Centers

• Soybean Production Research Crew
 (15,000+ individual plants were measured for plant spacing)
Thank you!

Péter Kovács
South Dakota State Univ.
Assistant Professor, Precision Ag. Cropping Systems
Peter.Kovacs@sdstate.edu
(605) 688-6536 ☮️ kov_pet