InfoAg 2018 - What Are the Critical Data Layers for Building a Field-Level Database, Today and in the Future

Dave Scheiderer
My Story

• Agronomist – 37 yrs.
• Owner (Integrated Ag Services) – 28 yrs.
• Part time farmer – 32 yrs.
• Business beliefs
 – Practical application of precision ag (PA)
 – Driven by ROI
What are the critical layers?

- Start with the basics to identify (geo-reference) the obvious yield limiting areas
- Liebig's law of the minimum

<table>
<thead>
<tr>
<th>Rank</th>
<th>Factor</th>
<th>Value</th>
<th>bu/acre</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Weather</td>
<td>70+</td>
<td></td>
<td>27</td>
</tr>
<tr>
<td>2</td>
<td>Nitrogen</td>
<td>70</td>
<td></td>
<td>26</td>
</tr>
<tr>
<td>3</td>
<td>Hybrid</td>
<td>50</td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>4</td>
<td>Previous Crop</td>
<td>25</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>Plant Population</td>
<td>20</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>Tillage</td>
<td>15</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>Growth Regulators</td>
<td>10</td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

Total = 260 bu 100%

Dr. Fred Below, U of Ill. - Seven Wonders of the Corn Yield World
Management Zones: **REDEFINED!**

Only Integrated Ag CPU Zones bring the highest level of precision that today’s Agriculture demands!

Common Production Unit (CPU)
- CPU 9: High Productivity
- CPU 8
- CPU 7
- CPU 6
- CPU 5: Medium Productivity
- CPU 4
- CPU 3
- CPU 2
- CPU 1: Low Productivity

Beginning with our HD Sample Collection, CPU’s accurately map field productivity to drive input decisions.
Common Production Units (CPU™)

- Elevation/Slope
- Normalized Yield (3-5 yrs)
- Organic matter (HD soil test)
- CEC (HD soil test)
OM - 1/8 ac. Grids
445 soil samples

OM - 1/4 ac. Grids
OM - 2.5 ac. Grids
OM - 1/2 ac. Grids

OM - 26 soil samples
OM - 113 soil samples
0.25 ac. Auto Vs. 2.5 ac. Core by Hand
Phosphorus (Bray P1)

250 soil samples

Beck’s PFR 1/4 ac. Grids
Beck’s PFR 2.5 ac. Grids

21 soil samples
Temporal Stability of Potassium

Grower: Scheiderer Bros
Farm: Wingfield
Field: W2
Year: 2011
Average Soil %K: 2.433%
Minimum Soil %K: 0.00%
Maximum Soil %K: 4.700%

Grower: Scheiderer Bros
Farm: Wingfield
Field: W2
Year: 2015
Average Soil %K: 2.126%
Minimum Soil %K: 1.300%
Maximum Soil %K: 4.100%
Temporal Stability of Potassium

Grower: Scheiderer Bros
Farm: Wingfield
Field: W2
Year: 2015
Average Soil %K: 2.156 %
Minimum Soil %K: 1.500 %
Maximum Soil %K: 4.000 %

Grower: Scheiderer Bros
Farm: Wingfield
Field: W2
Year: 2016
Average Soil %K: 1.873 %
Minimum Soil %K: 1.100 %
Maximum Soil %K: 3.800 %
Temporal Stability of Potassium

1.0 ac. Spring 2017

1.0 ac. Fall 2017

Grower: Scheiderer Bros
Farm: Wingfield
Field: W2
Year: 2017
Average Soil %K: 2.879 %
Minimum Soil %K: 1.330 %
Maximum Soil %K: 5.490 %

Grower: Scheiderer Bros
Farm: Wingfield
Field: W2
Year: 2017
Average Soil %K: 2.764 %
Minimum Soil %K: 1.750 %
Maximum Soil %K: 4.210 %
What have we learned from high density (HD) soil sampling?

• Spatial Stability (space)
 – With proper sample density (data points) nutrient mapping can accurately match today’s spreading capabilities
 – Dense soil test data contain important attributes needed to build accurate management zones
 – Lowering the cost of sampling is key to economically increasing sampling density

• Temporal Stability (time)
 – Plant available nutrients can change randomly over time
 – Not as simple as fall sampling versus spring sampling to solve the problem
 – To improve temporal stability 2-4 year sampling intervals are needed, depending on sample density,
 – Use caution when doing data analysis using sparse soil test data
 – Need more research on temporal effects of soil test results!!!
Cheap data storage

8,000 (32 MB) cards = 1 (256 GB)
MOORE’S LAW

Microprocessor Transistor Counts 1971-2011 & Moore’s Law

The graph illustrates the trend of transistor counts in microprocessors over the years, showing a doubling every two years, which is consistent with Moore’s Law. The x-axis represents the date of introduction, while the y-axis shows the transistor count.
Field boundary and soil test points, good enough
High level row by row detail

- Hybrid/variety name
- Population
- Spacing
- Doubles
- Skips
- Singulation quality, etc.
- Gauge wheel pressure
- Hyd. pressure applied
Artificial Intelligence/Machine Learning

- Quantitative learning – AI/machine learning
- Thick learning – agronomist/grower relationship
Quantitative Learning
Example: Plant Stands
Future Decision Ag Drivers

• Higher resolution lower cost data collection
• Quantitative data, **not** NDVI zone creation
• Machine learning –
 – growth models to help make decisions
 • disease, weeds, insects, yield
• Autonomy
• Increase the Velocity of data

Reduced cost, Increased Profit!
Velocity of Data

The velocity of data increases when more uses of the data are occurring throughout the growing season.
Velocity of Data

How ADAPT works to enable data conversion

- Use data quickly to make corrective decisions
- Fast and seamless data transfer to share with many different decision tools
- Use data in modeling software many times during the growing season to validate input decisions and insure profitability (machine learning)
- Postmortem of the year’s activities to build a better plan for the next year
Thick Learning

• Growers will choose their trusted advisor to manage their PA, just as they do with their accountant
 – **Trusted advisor = Data manager**, agronomist, economist, and environmentalist
 – Ability to manage multiple data platforms, **no** single platform will prevail
• Some advisors and growers will not have the skill sets to handle this new AI frontier
 – The PA is creating a divide between those adopting this technology and those unwilling or unable to change
• Be positioned for massive consolidation and vertical integration right down to the farm
 – Could crop production become like contract livestock has become??
 – Will the “boots on the ground agronomist” become obsolete, replaced by AI and remote sensing??
How did I get here and how can I get out of this mess?
Questions
David Scheiderer
937-597-1045
d.scheiderer@integratedag.net