Know Your Yields!
Importance of Accurate Yield Records for Nitrogen Management Algorithms for Corn

Quirine Ketterings
Nutrient Management Spear Program
Cornell University

http://nmsp.cals.cornell.edu

Quirine Ketterings
Nutrient Management Spear Program
Department of Animal Science, Cornell University
Outline

• New York Agriculture
 • The case for agriculture and environmental management
 • Corn for grain and corn for silage
• Breaking the yield ceiling
• Yield monitors (calibrating and cleaning of data!)
• Initial work on active sensors
• The need for zone based management
• On-farm research networks
• Wrap-up
Dairy farming is important to NY
- 35,000 farm operations
- 625,000 milking cows
- ~600 CAFOs
- 3rd in milk production
- 3rd in corn silage production

485,000 acres in corn grain
495,000 acres in corn silage
161 bu/acre and 18 ton/acre in 2017
CAFOs have nutrient management plans

https://www.nass.usda.gov/Quick_Stats/Ag_Overview/stateOverview.php?state=NEW%20YORK
Keeping Clear Water Clean

New York Aquifer Map
Reduce N and P Loss to the Chesapeake Bay Watershed

Chesapeake Bay Model delivery factors.

Source: Chesapeake Bay Program.
Corn Yields over Time in New York

- Corn grain (bu/acre): $y = 0.1198x - 223.69$, $R^2 = 0.83871$
- Corn silage (ton/acre): $y = 1.4105x - 2704.2$, $R^2 = 0.9266$
THANK YOU!

2011, 2013 (2017 started wet, ended really well)
Outline

• New York Agriculture
 • The case for agriculture and environmental management
 • Corn for grain and corn for silage

• Breaking the yield ceiling
 • Yield monitors (calibrating and cleaning of data!)
 • Initial work on active sensors
 • The need for zone based management
 • On-farm research networks
 • Wrap-up
2013-2014 Yield Potential Study Results

30% <90% of YP, 36% ± 10% of YP, 25% >110% of YP

\[y = 0.5568x + 66.342 \]
\[R^2 = 0.50846 \]

\[y = -0.018x^2 + 5.223x - 242.91 \]
\[R^2 = 0.78368 \]

\[y = -0.0079x^2 + 2.9744x - 142.96 \]
\[R^2 = 0.84618 \]
2013-2014 Yield Potential Study Results

36 fields only!!

N applied / N removed (lb/lb)

Yield (bu/acre at 15% moisture)

- Red squares: Yield < 90% of Yield Potential
- Blue diamonds: Yield between 90 and 110% of Yield Potential
- Green triangles: Yield > 110% of Yield Potential
Yield Stability Map

Corn yield data on farms can be used to develop field yield stability classifications:

- Q1. High yield, low variability
- Q2. High yield, high variability
- Q3. Low yield, high variability
- Q4. Low yield, low variability

Each triangle is one field with 3+ years of data.
• Timing and amount of rainfall, field drainage, impacted corn yield.

• Fields in Q1: 36-40 lbs P/acre Morgan and 2.9-3.2% organic matter.

• For improved yields: Increase organic matter, improve drainage, and provide optimal soil fertility.
Biological Buffer Capacity
Outline

• New York Agriculture
 • The case for agriculture and environmental management
 • Corn for grain and corn for silage
• Breaking the yield ceiling
• Yield monitors (calibrating and cleaning of data!)
• Initial work on active sensors
• The need for zone based management
• On-farm research networks
• Wrap-up
Yield Monitors – Can We Trust Them?

When calibrations are done regularly, forage yield monitors can provide an accurate and precise measure of yield.

- **Moisture sensors:**
 - within 3.7 % for alfalfa/grass
 - 3.0 % of DM for corn silage

- **Flow sensors:**
 - ± 0.2 tons/acre for alfalfa
 - ± 0.5 tons/acre for corn silage

Published in 2016
So Once We Calibrate, Are We Good to Go?

• Data cleaning is extremely important
 • Comparable data across fields, farms, for both grain and silage.
• Standardized protocols were not available
• Firms and farms differ in how much and how well they clean data of errors
• This can result in large errors from field to field, from farm to farm, and from year to year…making data a lot less valuable for individual farms
• Reliable cleaning needed to build research networks
So Once We Calibrate, Are We Good to Go?

• Error sources:
 • Change in machine speed → Distance travelled → Area harvested
 • Delay (time)
 • Mass flow in wrong place
 • % moisture in wrong place
 • Width → Overlap → Area
 • Start and end pass (ramping effect)
Yield monitor data need to be cleaned – all maps from yield monitors contain errors!

Mean raw wet yield: 22.1 ton/acre vs 16.8 tons/acre with data points > 40 ton/acre removed. Raw data contained points with up to 3393 tons/acre!
Grain data more reliable but also need cleaning.
Process Cleaning Corn Silage and Grain Yield Monitor Data for Standardized Yield Maps across Farms, Fields, and Years

Protocol
2-8-2018

Tulsi Kharel, Sheryl Swink, Connor Youngerman, Angel Maresma, Karl Czymmek, and Quirine Ketterings
Nutrient Management Spear Program, Cornell University

Peter Kyveryga
Iowa Soybean Association

John Lory, Theresa A. Musket, and Victoria Hubbard
University of Missouri

Manual for whole farm yield monitor data cleaning

Outline

• New York Agriculture
 • The case for agriculture and environmental management
 • Corn for grain and corn for silage
• Breaking the yield ceiling
• Yield monitors (calibrating *and* cleaning of data!)
• Initial work on active sensors
• The need for zone based management
• On-farm research networks
• Wrap-up
Crop Sensors

Initial work: GreenSeeker (active sensor)
Timing of Sensing for Corn Silage

Yield predictions from V4 through V11
Knowing the Crop’s Growth Stage is Important

Scanning time: V6 (silage), V7 (grain) or later
For Further Details (Corn and Forage Sorghum)

Nitrogen Algorithm Development for NY

• V6 is the ideal time to start scanning
• Later scans are good for yield prediction, but:
 • Less crop “differentiation”
 • Yield could be impacted by delay in N application
• N-rich strips are essential
• Field testing needed
Limitations with Just Use of Crop Sensors

Yield enhancing or limiting factors that occur after sensing data are collected can lead to underestimation or over-estimation of \(R_{\text{harvest}} \) using \(R_{\text{NDVI}} \) as the independent variable”.

Outline

• New York Agriculture
 • The case for agriculture and environmental management
 • Corn for grain and corn for silage
• Breaking the yield ceiling
• Yield monitors (calibrating and cleaning of data!)
• Initial work on active sensors
• The need for zone based management
• On-farm research networks
• Wrap-up
Biological Buffer Capacity; Within-Field

• The same quadrant method can be applied within fields.
• Allows for development of management zones based on BBC (as determined by yield stability).
• Allows for quickly checking on crop response to nutrients, pest control, cover cropping, etc.
• Simple, easy to implement, treatment strips.
Next Steps

• Evaluate soil and field characteristics that separate Q1 versus Q2, Q3, and Q4 areas within a field (drivers for yield and yield stability).

• Collaboration with University of Buffalo (Dr. Erasmus Oware and colleagues) and Rochester Institute of Technology (Jan van Aardt and colleagues)
Outline

• New York Agriculture
 • The case for agriculture and environmental management
 • Corn for grain and corn for silage
• Breaking the yield ceiling
• Yield monitors (calibrating and cleaning of data!)
• Initial work on active sensors
• The need for zone based management
• On-farm research networks
• Wrap-up
On-Farm Research Network

• Apply N rich strips across quadrants within farmer fields to evaluate N response per zone:
 • Project in collaboration with Dupont/Pioneer/Corteva, Growmark FS, Champlain Valley Ag, University of Buffalo, Rochester Institute of Technology, counterparts in Missouri and Iowa and others.
 • Allows for evaluation of crop sensor algorithms, use of other technologies (UAS mounted NDVI and multi-spectral cameras, satellite imagery, EC mapping etc.)
Partners in Research

N-rich strip
2018 Projects

N rich strips
• 26 farmer fields
• Use of technology

Manure treatment
• 4 farmer fields
• Use of targeted soil sampling
• UAS flights
• Satellite imagery
• Modeling software
The Concepts: To be Tested

Average yield gain: 0.3 tons/acre

Average yield gain: 2.3 tons/acre
Ongoing Work

• Alternative methods for predicting yield:
 • Crop sensors (UAS mounted NDVI and multispectral cameras)
 • Satellite imagery
Outline

• New York Agriculture
 • The case for agriculture and environmental management
 • Corn for grain and corn for silage
• Breaking the yield ceiling
• Yield monitors (calibrating and cleaning of data!)
• Initial work on active sensors
• The need for zone based management
• On-farm research networks
• Wrap-up
In Summary

• Technology is great but calibration and data cleaning are very important.
• Multi-year yield data can be used to develop yield stability based management zones.
• Management zones allow for:
 • increased yields
 • better resource allocation over time
 • better sensor algorithms
Farmer, Industry, University Partnerships

Working together for real solutions in agriculture and environmental management
THANKS!

• Grants
 • Northern New York Agricultural Development Program (NNYADP)
 • Federal Formula Funds
 • USDA Conservation Innovation Grants
 • New York Farm Viability Institute
 • Northeast Sustainable Agriculture Research and Education

• Farm Advisors (CCE, NRCS, and Consultants)
• Farms, Research Facilities, and NMSP Staff