Seasonal Variation in Soil Test Potassium: When do you sample?

John Breker
Soil Scientist, AGVISE Laboratories
Northwood, ND

David Franzen
Professor and Ext. Soil Specialist, NDSU
Fargo, ND

Twitter: @AGVISE @jsbreker
Soil Potassium Basics (aka K, potash)

- Essential macronutrient
 - 200 bu/ac corn = 270 lb/ac K\(_2\)O
 - 50 bu/ac soybean = 110 lb/ac K\(_2\)O
- Exchangeable K\(^+\) on clays/soil OM
- Immobile nutrient
 - Concentrated in topsoil (0-6”)
 - Limited leaching (except sandy soils)
- Fixed/released by clays
 - Fixing clays: Illite, vermiculite
 - Non-fixing clays: Smectite*, kaolinite*

*Stay tuned for more
Today’s goals

1. Recognize the complexity of soil K forms and dynamics
2. Identify interpretive limits of soil test K data
3. Manage those limitations, improve data utilization
Precision Nutrient Management

We are really good at spatial variability:
 • Topography
 • Yield
 • Zone/grid sampling

What about variability in time?
 • Scale: Measurement vs. management
 • Decade (long-term trends, farm succession)
 • Year (soil sampling, crop choice, lease agreements)
 • Month (soil sampling, fertilization)
 • Week (growth stage, tissue sampling, rainfall)
University of Illinois

David W. Franzen
North Dakota State University

Seasonal component in long-term soil test K (Urbana, IL)

The Potassium Cycle

When?

When?

When?

How fast?
Recent soil K studies in North Dakota

2015: 13 sites
2016: 6 sites
Objectives

1. Evaluate corn yield response to K fertilization
2. Identify adequate soil K testing method
 • Determine soil test K critical level
3. Assess seasonal soil test K variation
Soil sampled (0-6”) every two weeks during growing season

Mid-May through late-September
STK range: 49 ppm
STK range: 44 ppm
STK range: 49 ppm
STK range: 36 ppm
STK range: 23 ppm
Leonard S 15

STK range: 90 ppm
What exactly is soil test K?

Standard method in North Central region:
1.0 M NH$_4$OAc (pH 7) extraction on dry soil

- Clay mineral surface
- Exchangeable K$^+$
- Displaced K$^+$
- NH$_4^+$ ion
- Solution K$^+$ already in solution
Soil Potassium Forms

Soil solution K
- Dissolved K^+ ions in soil solution
- Directly available for plant uptake

Exchangeable K
- K^+ held by negatively-charged cation exchange sites on clay minerals and soil organic matter
- Readily available to soil solution
Soil Potassium Forms

Nonexchangeable K (interlayer K, fixed K)
- K^+ held between 2:1 clay layers
- Slowly available to soil solution
- Fixation/release dynamic process

Mineral K
- K^+ held within mineral structures
- Slowly available to soil solution
Simplified Potassium Cycle

![Diagram of the simplified potassium cycle](image)

- **Plant-available K**
- **Soil test K**

*Time scale: a cropping season
Spatial scale: cumulative rhizosphere volume for a crop (rooting zone)*

Key Boxes:
- **Soil solution K**
- **Exchangeable K**
- **Primary minerals (feldspars, micas)**
- **Leached K**

Legend:
- Erosion
- Runoff
- K loss
- Non-harvested K
- Plant K
- Harvested K
- Added K
- Soil surface
- Interlayer K

Notes:
- Dissolution
- Depth of bioavailable K

Layer structure of 2:1 clay minerals

Not life-sized: Clay minerals only visible with electron microscope.
Illite

Non-expandable, collapsed layers

Smectite

Expandable, shrink-swell layers
What real clay minerals look like using an electron microscope

Exchangeable K
(exchangeable Ca, Mg, Na, etc.)
Nonexchangeable K

Fixed K

Interlayer K

Fixed K
A dynamic equilibrium

Exchangeable K ↔ Nonexchangeable K

Speed? Magnitude?
Clay mineral aKordion
Wet/dry cycles promote K fixation

Conversion of smectite to illite after 100 wet/dry cycles
Those are the nuts and bolts.

What do you do?
Can you predict soil test K?

STK over time across 12 sites in 2015

- Interlayer K release
- Residue K leaching
- Plant K uptake
- Fixation (wet/dry)
Soil test K change is scalable
Soil test K is related to illite content

$R^2 = 0.437$
Soil mineralogy is not static

Exchangeable K ↔ Nonexchangeable K

Soil characterization data from soil survey era?
Age and scale
Difficulties in predicting seasonal soil test K change

Direction
- Freeze/thaw
- Fertilizer K
- Rainfall
- Plant K uptake
- Plant senescence

Magnitude
- Soil test K level
- Plant K uptake
- Soil water content
- Soil texture
- Soil mineralogy

What is more useful? Absolute or relative change
Lessons from recent soil K studies in North Dakota

<table>
<thead>
<tr>
<th></th>
<th>Maximum STK</th>
<th>Minimum STK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Season</td>
<td>Spring/early summer</td>
<td>Late summer/fall</td>
</tr>
<tr>
<td>Sampling dates</td>
<td>12 May – 13 June</td>
<td>10 August – 30 August</td>
</tr>
<tr>
<td>Seasonal range</td>
<td>16 – 90 ppm</td>
<td></td>
</tr>
<tr>
<td>Factors</td>
<td>Plant K uptake</td>
<td>Soil water dynamics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Plant senescence (residue K leaching)</td>
</tr>
</tbody>
</table>
What are our tools?

- Soil testing
- Computer models
- Clay mineralogy
What do we know?

- Highest STK in spring/early summer
- Lowest STK in late summer
Thoughts about soil sampling time (agronomically, practically)

<table>
<thead>
<tr>
<th>Spring/early summer</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highest STK</td>
<td>Lowest STK</td>
</tr>
<tr>
<td>Better crop response classification</td>
<td>Weaker crop response classification</td>
</tr>
</tbody>
</table>

Application within grid/zone sampling

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Growing crop</td>
<td>Harvested crop, late?</td>
</tr>
<tr>
<td>Uniform soil depth</td>
<td>Tillage, clods?</td>
</tr>
<tr>
<td>Calmer soil sampling</td>
<td>Hectic soil sampling</td>
</tr>
</tbody>
</table>
More thoughts about soil sampling time (spatial variability, K dynamics)

Spring/early summer
- Consistent moisture across field
- Before plant K uptake
- Equilibrium between exch K and nonexch K

Fall
- Drier fields, variable moisture
- After plant K uptake
- Disequilibrium between exch K and nonexch K
Recognize your goals

- Spatial variability within a field
- Tracking soil test K levels from year to year
- Recommendations for one-year or multi-year fertilizer applications

Working within goals
- Sample at same time of year every time
- Utilize seasonal STK variation in sampling
Concluding Thought

“There is a lot that we know [about potassium]. I don’t know if it is all useful for making a recommendation.”

-Dr. Sylvie Brouder (Purdue Univ.), 2014 SSSA Meeting
Thank you for your kind attention

Acknowledgements
Dr. David Franzen, NDSU
Kevin Horsager, NDSU
Dr. Shiny Mathews, NDSU
Larry Swenson, NDSU (retired)
Dr. Lakesh Sharma, Univ. Maine
Eric Schultz, BASF